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I am very honoured and pleased to participate in the commemoration of the 50**
anniversary of the founding of the CWI of the Dutch Foundation Mathematical
Centre.

The subject of my talk is concerned not with differential equations but
with something that is used all the time in various nonlinear analytic prob-
lems, namely degree theory. It seems particularly appropriate to speak on this
subject here since degree theory was developed by L.E.J. Brouwer. The infinite
dimensional extension of degree theory, the Leray—Schauder degree, is a basic
tool in attacking nonlinear differential equations. This talk describes some joint
work with H. BREZIS [5][6] and is concerned with finite dimensional degree.

I recall the notion of degree (and its properties) of a map u from one smooth
n-dimensional compact oriented manifold X without boundary to a connected
one Y of the same dimension. The degree measures, in a suitable sense, the
number of times Y is covered. It may be defined using homology theory but
we describe it in more analytic terms:

Suppose u is in C' and that y € YV is a regular value of the map, i.e., the
preimage of y, u~!(y), consists of a finite number of points, x1,...,z; in X,
and the Jacobian matrix J,, in terms of local coordinates near x; and near y,
is nonsingular at each x;. If we choose local coordinates compatible with the
given orientations on X and Y, then degree of u at y, denoted deg(u, X,y),
counts the number of points z; in u~!(y) algebraically:

k
deg(u, X,y) = Z sgn det Jy(z;) -

i=1

This number turns out to be independent of y, and is defined as the degree of
the map u from X to Y, deg(u, X,Y) = degu.

In case we put Riemannian metrics on X and Y, then degree may be ex-
pressed by an integral,
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(1) deg(u, X,Y) = ﬁ/det T () d Vol(x).
X

Here J, is computed using geodesic normal coordinates about x, and geodesic
normal coordinates about u(z).

Here is another well known formula in case X = 02, where 2 is a smooth
bounded domain (open connected set) in R*, and ¥ = S"~!. Suppose u €
CL(X,Y). If u is any C! extension of u inside (2, as a map into R™, then

1
(2) deg (u,@ﬂ,S"fl) = E /det Jg dat - da™ .
Q

Here |B| is the volume of the unit ball B in R™.

The notion of degree extends to continuous maps from X to Y, via approx-
imation in C'(X,Y), by C! maps from X to Y. This is because of the following
fundamental fact.

There exists 69 > 0 depending only on X and Y such that if
u,v € C1(X,Y) and the distance from u to v measured in the

(3) C° norm (this depends on metrics on X and Y'), disto (u,v),
is less than égy, then

degu:=deg(u, X,Y) = deg(v,X,Y) =:degv .
Here are some further properties of degree.

1. Degree is invariant under homotopy, i.e. if we deform a map u € C(X,Y),
depending continuously on a parameter, then the degree does not change.

2. If degu # 0 then Y C u(X).

Degree is also defined for a map from X to Y in case X has a boundary: Sup-
pose X is an open set with compact closure in an open oriented n-manifold X,
and that Y is an open connected oriented n-manifold. Then for v € C(X,Y),
ify € Y\ u(0X), the degree deg(u, X,y) is defined. It is also invariant under
continuous deformation u; of the map v and continuous deformation y; of y,
depending on a continuous parameter ¢, provided

Yt g ut(aX) Vt.

One more simple fact about degree: Suppose X is the unit ball B in R"
and that v maps B into R*. If y € R” \ u(9B) then

(4) deg(u, B,y) = deg <u s™ S"‘1> :
lu =yl

In recent years, in work on some variational problems connected with some
nonlinear partial differential equations, it has become of interest to extend
degree to some classes of maps which need not be continuous. In 1983 BREZIS
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& CORON [4] studied maps u from S? to S? belonging to the Sobolev space
Wh2(52,52), ie., having square integrable first derivatives. Such maps just
miss being continuous, if the derivatives use LP integrable, for p > 2, the maps
would be continuous, by the Sobolev embedding theorem. It seems natural to
extend degree theory to such maps via the expression on the right hand side of
(1), for if u € W12(S?, S?) then det J, is in L'. More generally, the integral in
(1) makes sense for a map u € W1 ™ (X™,Y™). Here we think of Y as smoothly
embedded in some RY | and that u(z) € Y for almost every = in X.

QUESTION. Is the corresponding expression on the right hand side of (1)
an integer? If so, does it have the usual properties of degree?

As above, functions u in WP, p > n are continuous, but they need not be
in case p = mn. It is rather clear that the answer to the question is yes if smooth
maps from X to Y are dense in Wh™(X,Y). At this point let me make some
side remarks in connection with density of smooth maps.

Suppose M and N are compact manifolds of possibly different dimensions;
M may have boundary, but N not. N is assumed to be smoothly embedded
in R* for some s. Under what conditions is C'(M, N) dense in WhP(M, N)?
The answer is

a) Yes if p > m = dim M; this is quite easy since such maps are continuous,
by Sobolev embedding.

b) Yes is p = m. The proof uses Poincaré’s inequality, and is essentially due
to SCHOEN & UHLENBECK [10].

c) For p < m there is the following result of BETHUEL [2]: The answer is

yes <= IM(N)=0.

Returning to degree theory for maps in Sobolev classes between manifolds,
L. Boutet de Monvel and O. Gabber (see ref. [6] in [5]) considered maps u in
wi 1/2(5'1, S1). In terms of the Fourier series expansion of u,

) = Z a; et

with |u(8)| = 1 a.e. 8, the W /2 norm of u is given by

el e =Y Ll ag .

If u were smooth then degu is just the winding number of the image about S*,
which is given by

1 d 1
degu = — e — ¢ udu
2m u 2m
51

(5) > ilas
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by Parseval. Thus for u € W' 1/2_ the series (5) is absolutely convergent, and
Boutet de Monvel and Gabber show that it is an integer. It is not obvious
that for, say, a continuous map u from S! to S, the series (5) in terms of the
Fourier coefficients of u, is summable and equals an integer.

More generally, for B the unit ball in R", consider a map u € W™ (B, R").
The trace u of & on S™! is well defined as a function in W'=1/™7(g"=1 R").
Suppose |u(z)| = 1 a.e. Look at formula (2). The right hand side makes sense.
Does the left hand side? We cannot use formula (1) for the left hand side, since
u = trace @, has just fractional derivatives; the right hand side of (1) has no
sense.

Boutet de Monvel and Gabber pointed out that for maps from S to S!, an
appropriate class of maps for which to define degree, and which includes maps
in Wh1/2 and continuous maps, is the class VM O. What Brezis and I have
done is to carry this out for VMO maps from general X to Y.

Let me first recall the class BM O, functions of bounded mean oscillation.
(It was introduced by F. John in connection with work in elasticity theory.)
Let X be an n dimensional Riemannian manifold without boundary and with
some injectivity radius rg. The class of real functions f in BMO(X) is a slight
enlargement of L (X).

BMO: An integrable real function f is in BMO if

(6) fllnav0 = sup / £ B/f < oo

BC
B

Here B represents a geodesic ball in X with radius < 7o, f denotes taking
B

the average over B.
Modulo adding constants, BM O is a Banach space, with the norm given in
(6). An equivalent norm is

(@) 171l = sup Bfou(y) 1)

This second expression enables one to define BMO maps from X into any
metric space.
A typical example of a BM O function in R™ is

f=loglz — x| .

Now the space of continuous functions is not dense in BMO. D. SARASON
[9] studied the closure of the space of continuous functions in BM O, calling it
VMO because, as he proved, it is characterized by the following property:
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(8) f in BMO belongs to VMO <= |1£i\m f f—ff =0
—0
B B
Here |B| denotes the volume of B.

ExaMPLES. In R™, the function log|z| is not in VMO, but |log|z||*, 0 <
a < 11is; so also is log|log |z||. For X a compact manifold as before, without
boundary, W1 ™(X) C VMO(X). This is proved with the aid of Poincaré’s
inequality. More generally, the Sobolev space W*P(X) with derivatives of
order s, s real, with 0 < s < n, and sp = n, is in VMO. A good recent
reference for BMO and VMO is STEIN [11]. A map w: X — R" is in BMO
(or VMO) if each component is.

DEGREE. Consider, as before, our compact, oriented, manifolds X,Y of di-
mension n, without boundary. We suppose that they have Riemannian metrics
and that Y is smoothly embedded in RY for some N. Let u be a VMO map
from X to Y, v € VMO(X,Y), meaning, u € VMO (X, ]RN) and u(z) €Y
for almost every ©z € X.

We extend the notion of degree via approximation, in the BM O topology,
by continuous maps. This is done in [5] as follows. For u in VMO(X,R"),
0 < e < rp, the function

B.(z)

(here B(z) is the geodesic ball of radius ¢ centred at z) is continuous and
tends to u(z) in the BMO topology as € — 0. It does not take values in Y;
however, for € small, it lies close to Y, namely, we have:

dist (u.(z),Y) < / |lu —w(z)] — 0 as € — 0,
B.(z)
by Sarason’s characterization (8). Now define
u.(z) = Pu.(z)
where P is projection to closest point on Y.

DEFINITION deg(u, X,Y) = deg(u., X,Y) for € small.

Since, for € small, the maps u,. are all homotopic, it follows that the maps
all have the same degree. A principal result is:

THEOREM 1. Foru € VMO(X,Y), 36 > 0 such that for everyv € VMO(X,Y),
with

IA

lu —vllBrmo 6,
deg(v, X,Y) = deg(u,X,Y).
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A natural question is whether this result holds with a fixed § independent
of u, i.e. does the analogue of (3) hold? The answer is no.

SOME PROPERTIES:

i) By Theorem 1, the degree is invariant under continuous homotopy in VM O(X,Y).
It does not depend on the Riemannian metrics nor the particular embed-
ding of Y in RV .

ii) If deg(u, X,Y) # 0 then

(9) Ess R(u) =Y.

To explain, note that since u is defined a.e., the range of w is not well

defined.

DEFINITION Ess R(u) is the smallest closed set Y in Y such that

u(z) € Z for almost all = € X;

It exists.

(9) asserts that there is no open ball B in Y with u(z) € Y \ B a.e.

REMARK. The image of u may cover Y infinitely many times. Example:
X=Y=25' and

_ i)

u =
f(0) = 0+((0) log|0 — || ;

here ( is a smooth cutoff (bump) function with support near 6 = .
Further properties of degree are given in [5]. The proofs are rather straight-
forward. A useful fact there is the following;:

REMARK. If u € BMO (X, ]RN) and F is a uniformly continuous map of RY
to R” then
Foue BMO (X,R") .

However, in its dependence on u, as a map from BM O (X, IRN) to BMO (X, IRT),
it need not be continuous. (This is true even if F is Lipschitz.) It is continuous
at every u in VMO (X, ]RN).

VMO is not the most general class for which degree, having the usual prop-
erties, may be defined. deg(u, X,Y’) may also be defined for v € BMO(X,Y)
provided u is close to VMO in the BMO topology, i.e. that Mp(u) defined

below, is small.
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SARASON [9] showed that 3 A > 0 such that
My(u) < distgaro (u, VMO (X,RY)) < A My(u),

where for a < 7o,

M, (u) = sup % |lu — e (z)|
z€X
=Sa B.(z)

and

My(u) = il{% My(u) .

FURTHER REMARKS.

a) (1) holds for u € Wh(X,Y).
b) (2) holds if
u e Wi=t/mn (9Q,5""1) and w € Whn(Q,R").
c) (4) holdsif u € WH™(B,R") and |u(z)—y| > 6 > 0 for almost all z € S™ L.

Recently A. ABBONDANDALO [1] proved that VMO(X,Y) is homotopically
equivalent to C'(X,Y’) via the inclusion map. Also L. GRECO, T. IWANIEC,
C. SBORDONE & B. STROFFOLINI [7] defined degree for a class of Sobolev
maps weaker than W1 ™(X,Y), and which are not in VMO.

In [6] we take up the case that X has compact closure in a larger manifold
X. For simplicity here, suppose X is a bounded open set in R, and that
Y = R™. First one should explain what is meant by BMO(Q). There are
apparently various possibilities:

(4) I fllBro = sup f‘f—ff <o,
BCQ B B

in fact one may use any norm, not just the Euclidean norm. Another possibility
is to consider balls B “well inside §2,” i.e. for some 7 fixed, 0 < 7 < 1,

1Pl = s f |r= f 1
r<r dist (2,09) B, (z) B, (z)

P. JoNEs [8] has shown that these norms are all equivalent, and that,

furthermore, (private communication) if VM O(Q) is the completion of C(2) in
the BM O topology, then C§°(2) is dense in VM O(). See [6] for modifications

of Jones’ arguments.

Now, for some y in R* we wish to define deg(u, 2, y) in case u € VM O(Q, R™).
For continuous maps u one assumes that

(10)y & u(09) .
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However, a map u € VMO need not have a trace on 0{2. We replace assumption

(10) by
36, r9 >0 such that

(11) f |lu(z) —y|>6 Ve, with r=
(@)

dist (z,00) <y

N | =

Then deg(u,2,y) can be well defined, and usual properties hold.

Under some circumstances one would like to have property (4). We derive
this property for a particular class of maps u in VM O(Q, R™) for which we can
define a trace on 0N if 912 is smooth.

In [6] we also answer a question raised by H. Amann. Suppose X and Y are,
as above, compact without boundaries and u and v are in VM O(X,Y)—so the
degrees of u and v are defined. Suppose u and v are connected by a homotopy
H belonging not to C([0,1], VMO(X,Y)), but to VMO(X x [0,1]; Y). Is it
true that degu = degv? Under suitable conditions on H for t near 0 and 1,
Cor. 3 in [6] asserts that the answer is yes. For further results see [6].

BRrEZIs [3] is an excellent expository article on our results.
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